
agilicious
Release 0.0.1

Robotics and Perception Group (UZH)

Apr 17, 2023





ABOUT

1 Agile flight done right! 3
1.1 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Papers to cite if you use Agilicious . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 What’s in it for you? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Dockerized Build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Code Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8 Modules Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.9 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.10 Hardware Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.11 ROS Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.12 Flightmare Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

i



ii



agilicious, Release 0.0.1

Read the Paper and watch the full Video!

ABOUT 1

https://rpg.ifi.uzh.ch/docs/ScienceRobotics22_Foehn.pdf
https://www.youtube.com/watch?v=fNYxPLyJ5YY


agilicious, Release 0.0.1

2 ABOUT



CHAPTER

ONE

AGILE FLIGHT DONE RIGHT!

Agilicious is a co-designed hardware and software framework tailored to autonomous, agile quadrotor flight, which has
been developed and used since 2016 at the Robotics and Perception Group (RPG) of the University of Zurich. Agilicious
is described in this Science Robotics 2022 paper. It is completely open-source and open-hardware and supports both
model-based and neural-network-based controllers. Also, it provides high thrust-to-weight and torque-to-inertia ratios
for agility, onboard vision sensors, GPU-accelerated compute hardware for real-time perception and neural-network in-
ference, a real-time flight controller, and a versatile software stack. In contrast to existing frameworks, Agilicious offers
a unique combination of flexible software and high-performance hardware. Agilicious has been used in over 30 scien-
tific papers at our lab, including trajectory tracking for drone racing scenarios at up to 5g and 70km/h (SciRob21_Foehn,
Video), vision-based acrobatic flight (RSS20 Kaufmann, Video), obstacle avoidance in both structured and unstructured
environments using solely onboard perception (SciRob21_Loquercio, Video), and hardware-in-the-loop simulation in
virtual-reality environments. Thanks to its versatility, we believe that Agilicious supports the next generation of scien-
tific and industrial quadrotor research. Agilicious allows to seamlessly develop, test, reproduce and benchmark control
algorithms such as Non-linear Model Predictive Control (MPC), differential-flatness-based control (DFBC) and INDI
(Incremental Non-linear Dynamic Inversion) (TRO 2022, Sun, Video). Agilicious also includes our state-of-the-art,
high-fidelity simulator, which uses Blade Element Momentum (BEM) theory for the propeller model and provides
accurate estimates of the quadcopter’s aerodynamic characteristics across the flight envelope (RSS 2021, Bauersfeld,
Video).

If you use Agilicious, please cite these papers. The full list of publications using Agilicious can be found here.

1.1 License

The right to use Agilicious is strictly limited to researchers who have explicitly been granted access by UZH. To ask
for access, please check the following page:

The following license applies in case you have been granted access to the Agilicious software by UZH.

License for Academic Non-commercial Use

This is a legal agreement (hereinafter referred to as the AGREEMENT) between
you (hereinafter referred to as the LICENSEE) and the University of Zurich, Rämistrasse
71, CH-8006 Zürich (hereinafter referred to as UZH) pertaining to the right to use
the software product “Agilicious” (hereinafter referred to as “SOFTWARE”) for academic,
non- commercial purposes only. By downloading or using the SOFTWARE you acknowledge
that you have read the AGREEMENT, understand it and agree to be bound by its terms and

(continues on next page)

3

https://rpg.ifi.uzh.ch/
https://rpg.ifi.uzh.ch/docs/ScienceRobotics22_Foehn.pdf
https://rpg.ifi.uzh.ch/docs/ScienceRobotics21_Foehn.pdf
https://youtu.be/ZPI8U1uSJUs
https://rpg.ifi.uzh.ch/docs/RSS20_Kaufmann.pdf
https://youtu.be/2N_wKXQ6MXA
https://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
https://www.youtube.com/watch?v=m89bNn6RFoQ
https://rpg.ifi.uzh.ch/docs/Arxiv21_MPC_Sun.pdf
https://www.youtube.com/watch?v=XpuRpKHp_Bk
https://rpg.ifi.uzh.ch/docs/RSS21_Bauersfeld.pdf
https://www.youtube.com/watch?v=Nze1wlfmzTQ
https://agilicious.readthedocs.io/en/latest/credits.html
https://rpg.ifi.uzh.ch/aggressive_flight.html
https://rpg.ifi.uzh.ch/docs/Agilicious_LICENSE_AGREEMENT_ACADEMIC_USE.pdf


agilicious, Release 0.0.1

(continued from previous page)

conditions.

LICENSE TERMS

Introduction
(i) UZH has developed the SOFTWARE under the lead of Prof. Dr. Davide Scaramuzza

(hereinafter referred to as the PRINCIPAL INVESTIGATOR). SOFTWARE means the
collection of computer code in all forms including, without limitation, both
source code and binary code.

(ii) LICENSEE wishes to obtain a non-exclusive, non-transferable and royalty-free
license of the SOFTWARE for academic, non-commercial purposes only as specified
in this AGREEMENT.

In consideration of the above premises LICENSEE agrees as follows:
1 Grant/Scope of License

1.1 UZH hereby grants to LICENSEE a non-exclusive, non-transferable, royalty-free
license to use the SOFTWARE for internal academic, non- commercial purposes only.
1.2 UZH will not provide any services or support in connection with the SOFTWARE
or technical support within the scope of this AGREEMENT.

2 Permitted Use and Restrictions
2.1 LICENSEE agrees that it will use the SOFTWARE, and any modifications,
improvements, or derivatives to SOFTWARE that LICENSEE may create (collectively,
"IMPROVEMENTS") solely for its own internal, academic, non-commercial
purposes. The terms "academic, non-commercial", as used in this Agreement, mean
academic or other scholarly research which (a) is not undertaken for any direct
or indirect for-profit purposes, and (b) is not intended to produce works,
services, or data for commercial use.
2.2 The sale, lease or rental of any portion of the SOFTWARE or any IMPROVEMENTS
and/or the use of any portion of the SOFTWARE or any IMPROVEMENTS in any service
or good sold or otherwise made available to third parties is strictly prohibited.
LICENSEE further agrees not to use any portion of the SOFTWARE or of any␣

→˓IMPROVEMENTS
in any machine-readable form outside the SOFTWARE, nor to make any copies except for
its internal use, without prior written consent of LICENSOR.
2.3 LICENSEE shall not sub-license, distribute, transfer, disclose or make␣

→˓available
the SOFTWARE or any IMPROVEMENTS in whole or in part to another research group of␣

→˓the
LICENSEE or to any third party without prior written permission from PRINCIPAL
INVESTIGATOR (please submit inquiries by Email).

3. Warranty Disclaimer
3.1 THE SOFTWARE IS PROVIDED "AS IS" AND UZH MAKES NO REPRESENTATIONS OR␣

→˓WARRANTIES,
EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT WITHOUT LIMITATION, UZH MAKES NO
REPRESENTATIONS OR WARRANTIES OF MERCHANTIBILY OR FITNESS FOR ANY PARTICULAR PURPOSE
OR THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET LICENSEE'S REQUIREMENTS OR
THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY'S
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. FURTHERMORE, UZH DOES NOT WARRANT
OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE USE OF THE
SOFTWARE IN TERMS OF CORRECTNESS, ACCCURACY, RELIABILITY, OR OTHERWISE OR THAT␣

→˓DEFECTS
IN THE SOFTWARE WILL BE CORRECTED. UZH WILL NOT BE LIABLE FOR ANY CONSEQUENTIAL,
INCIDENTAL, OR SPECIAL DAMAGES, OR ANY OTHER RELIEF, OR FOR ANY CLAIM BY ANY THIRD

(continues on next page)

4 Chapter 1. Agile flight done right!



agilicious, Release 0.0.1

(continued from previous page)

PARTY, ARISING FROM THE USE OF THE SOFTWARE.
3.2 The LICENSEE expressly acknowledges and agrees that the use of the SOFTWARE␣

→˓is
at LICENSEE's sole risk and to hold harmless and indemnify UZH, and its affiliates,
employees or partners, from and against any third party claim arising from or in any
way related to LICENSEE's use of SOFTWARE, violation of this AGREEMENT or any other
actions in connection with the use of SOFTWARE.

4. Citation
The LICENSEE expressly acknowledges and agrees to reference the publication

→˓"Agilicious:
Open-Source and Open-Hardware Agile Quadrotor for Vision-Based Flight", AAAS Science
Robotics, 2022 (PDF: https://rpg.ifi.uzh.ch/docs/ScienceRobotics22_Foehn.pdf) and
to acknowledge Philipp Foehn, Elia Kaufmann, Angel Romero, Robert Penicka, Sihao␣

→˓Sun,
Leonard Bauersfeld, Thomas Laengle, Giovanni Cioffi, Yunlong Song, Antonio
Loquercio, Davide Scaramuzza, Robotics and Perception Group, and the UNIVERSITY
OF ZURICH as the source of the SOFTWARE in any publications reporting use of it
or any manual or document.

5. Title and Ownership.
Title, ownership rights, and intellectual property rights in and to the SOFTWARE
shall remain with UZH.

6. Term and Termination
6.1 This AGREEMENT shall become effective upon LICENSEE first downloading the
SOFTWARE (“Effective Date”).
6.2 UZH may terminate this AGREEMENT upon 30 (thirty) days advance written e-mail
notification to LICENSEE. Upon evidence of violation of any of the terms under
this AGREEMENT by LICENSEE, UZH may terminate this AGREEMENT without previous␣

→˓notice.
6.3 Upon termination LICENSEE is obliged to uninstall the SOFTWARE and␣

→˓IMPROVEMENTS
from all its computers and to destroy any copies of the SOFTWARE and IMPROVEMENTS
kept according to this AGREEMENT.
6.4 Articles 3 and 4 shall survive the termination or expiration of this AGREEMENT
for any reason in addition to those articles surviving by operation of law.

7. Miscellaneous
7.1 This AGREEMENT and the license granted herein or any part thereof under this
AGREEMENT are not assignable by LICENSEE without the prior written approval of UZH.
7.2 Neither party shall use the names or trademarks of the other, its related
entities and its employees, or any adaptations thereof, in any advertising,
promotional or sales literature, or in any securities reports required by the
respective authorities, without the prior written consent of the party so affected.
7.3 Each party is acting as an independent contractor and not as an agent,␣

→˓partner,
or joint venture with the other party for any purpose. Neither party shall have any
right, power or authority to act or create any obligation, express or implied, on
behalf of the other.
7.4 This AGREEMENT sets forth the entire AGREEMENT between the parties with␣

→˓respect
to the subject matter hereof. No supplement, modification or amendment of this
AGREEMENT shall be binding, unless in writing signed by a duly authorized
representative of each party to the AGREEMENT.
7.5 Should some or several provisions of this AGREEMENT be ineffective or␣

(continues on next page)

1.1. License 5



agilicious, Release 0.0.1

(continued from previous page)

→˓invalid,
or should there be an omission in this AGREEMENT, the effectiveness, respectively
the validity of the remaining provisions shall not be affected thereby. An
ineffective, respectively, invalid provision shall be replaced by the
interpretation of the agreement which comes nearest to the economic meaning
and the envisaged economic purpose of the ineffective respectively, invalid␣

→˓provision.
The same applies in the case of a contractual gap.
7.6 The terms stipulated in this AGREEMENT may not be modified in any way without
the mutual consent of the parties in writing.

8. Governing Law and Jurisdiction
THIS AGREEMENT SHALL BE GOVERNED BY THE LAWS OF SWITZERLAND. Any dispute arising
from or in connection with this AGREEMENT will be finally settled by the courts
of Zurich, Switzerland.

1.2 Papers to cite if you use Agilicious

If you use the code in the academic context, please cite:

• Philipp Foehn, Elia Kaufmann, Angel Romero, Robert Penicka, Sihao Sun, Leonard Bauersfeld, Thomas
Laengle, Giovanni Cioffi, Yunlong Song, Antonio Loquercio, Davide Scaramuzza,
“Agilicious: Open-Source and Open-Hardware Agile Quadrotor for Vision-Based Flight”,
AAAS Science Robotics, 2022,
Video, Bibtex

Additionally, please cite the following papers for the specific extensions you make use of:

• Sihao Sun, Angel Romero, Philipp Foehn, Elia Kaufmann, Davide Scaramuzza,
“A Comparative Study of Nonlinear MPC and Differential-Flatness-based Control for Quadrotor Agile Flight”,
IEEE Transactions on Robotics, 2022,
Video, Bibtex

• Philipp Foehn, Angel Romero, Davide Scaramuzza,
“Time-Optimal Planning for Quadrotor Waypoint Flight”,
Science Robotics, 2021,
Video, Bibtex

• Antonio Loquercio, Elia Kaufmann, Rene Ranftl, Mark Müller, Vladlen Koltun, Davide Scaramuzza,
“Learning High-Speed Flight in the Wild”,
Science Robotics, 2021,
Video, Bibtex

• Leonard Bauersfeld, Elia Kaufmann, Philipp Foehn, Sihao Sun, Davide Scaramuzza,
“NeuroBEM: Hybrid Aerodynamic Quadrotor Model”,
RSS: Robotics, Science, and Systems, 2021,
Video, Bibtex

• Elia Kaufmann, Antonio Loquercio, Rene Ranftl, Mark Müller, Vladlen Koltun, Davide Scaramuzza,
“Deep Drone Acrobatics”,
RSS: Robotics, Science, and Systems, 2020,
Video, Bibtex

6 Chapter 1. Agile flight done right!

https://rpg.ifi.uzh.ch/docs/ScienceRobotics22_Foehn.pdf
https://www.youtube.com/watch?v=fNYxPLyJ5YY
miscellaneous/references/Foehn2022science.bib
https://rpg.ifi.uzh.ch/docs/Arxiv21_MPC_Sun.pdf
https://www.youtube.com/watch?v=XpuRpKHp_Bk
miscellaneous/references/Sun2022tro.bib
https://rpg.ifi.uzh.ch/docs/ScienceRobotics21_Foehn.pdf
https://youtu.be/ZPI8U1uSJUs
miscellaneous/references/Foehn2021Science.bib
https://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
https://www.youtube.com/watch?v=m89bNn6RFoQ
miscellaneous/references/Loquercio2021Science.bib
https://rpg.ifi.uzh.ch/docs/RSS21_Bauersfeld.pdf
https://youtu.be/Nze1wlfmzTQ
miscellaneous/references/Bauersfeld2021rss.bib
https://rpg.ifi.uzh.ch/docs/RSS20_Kaufmann.pdf
https://youtu.be/2N_wKXQ6MXA
miscellaneous/references/Kaufmann2020rss.bib


agilicious, Release 0.0.1

• Matthias Faessler, Antonio Franchi, Davide Scaramuzza,
“Differential Flatness of Quadrotor Dynamics Subject to Rotor Drag for Accurate Tracking of High-Speed
Trajectories”,
IEEE Robotics and Automation Letters, 2018,
Video, Bibtex

1.3 Dependencies

Strictly necessary dependencies:

• Eigen Library: http://eigen.tuxfamily.org/index.php?title=Main_Page This is absolutely necessary for building
the core library.

Dependencies to use all provided functionalities (e.g., run MPC controller online, deploy using a motion capture sys-
tem,. . . ):

• Acados: https://github.com/acados/acados Framework for our MPC implementations.

• HPIPM: https://github.com/giaf/hpipm High Performance Interior Point Method solver.

• ROS VRPN Client: http://wiki.ros.org/vrpn_client_ros This client can be used to fly within motion capture
systems. Install with sudo apt install ros-${ROS_DISTRO}-vrpn-client-ros

Optional dependencies (they allow to run unit tests in your code):

• Google Test: https://github.com/google/googletest For unit tests and continuous integration.

• Google Benchmark: https://github.com/google/benchmark For optional micro-benchmarking.

1.4 What’s in it for you?

Agilicious is split in two parts, agilib and agiros.

agilib contains base classes and module implementations providing the base functionality necessary for agile flight. It
contains controllers, estimators, and logic, but with minimal dependencies (mainly Eigen). It allows users to integrate
Agilicious into their own infrastructure and can easily be extended with new modules. Meanwhile, agiros provides
bindings to common ROS interfaces, which make it easy and quick to set up and get flying, both in simulation and real
world.

In summary, this library offers the following modules:

1.4.1 Pipelines

The Pipeline architecture provides a modular way to combine controllers, estimators, reference trajectories
into a complete control system. It is possible to create multiple pipelines and switch between them at
runtime, allowing rapid prototyping.

1.3. Dependencies 7

https://rpg.ifi.uzh.ch/docs/RAL18_Faessler.pdf
https://rpg.ifi.uzh.ch/docs/RAL18_Faessler.pdf
https://youtu.be/VIQILwcM5PA
miscellaneous/references/Faessler18ral.bib
http://eigen.tuxfamily.org/index.php?title=Main_Page
https://github.com/acados/acados
https://github.com/giaf/hpipm
http://wiki.ros.org/vrpn_client_ros
https://github.com/google/googletest
https://github.com/google/benchmark
http://eigen.tuxfamily.org/index.php?title=Main_Page
https://www.ros.org


agilicious, Release 0.0.1

1.4.2 Controllers

• Model Predictive Control descred in Falanga IROS’18 and Sun TRO’22

• Incremental Nonlinear Dynamic Inversion described in Sun TRO’20

• Geometric Control described in Sun TRO’22

• Cascaded PID similar to Faessler RAL’18

1.4.3 Estimators

• A standard EKF using a pose estimate and propagating with IMU measurements.

• An EKF that uses a constant acceleration model and the Pose + IMU measurements.

• A feedthrough module that provides a simple way to pipe in your own estimate sources.

• A mock estimator that can corrupt an estimate with noise and bias to simulate real-world properties.

1.4.4 References

• Hover

• Velocity Commands

• Sampled Trajectories

• Polynomial Trajectories

1.4.5 Samplers

• Time-based sampling along a given reference.

• Positional sampling along a given reference which allows to robustly handle large disturbances.

1.4.6 Bridges

• RotorS interface

• Serial bridge to interface with our own flight control software

• Serial bridge to interface through LAIRD wireless modules.

• Serial bridge to interface with BetaFlight controllers.

1.4.7 Pilot

The Pilot handles all logic and interfacing.

8 Chapter 1. Agile flight done right!

https://rpg.ifi.uzh.ch/docs/IROS18_Falanga.pdf
https://rpg.ifi.uzh.ch/docs/Arxiv21_MPC_Sun.pdf
https://ieeexplore.ieee.org/document/9160894
https://rpg.ifi.uzh.ch/docs/Arxiv21_MPC_Sun.pdf
https://rpg.ifi.uzh.ch/docs/RAL18_Faessler.pdf
https://github.com/ethz-asl/rotors_simulator
https://www.lairdconnect.com
https://betaflight.com


agilicious, Release 0.0.1

1.4.8 Guard

A safety guard implementation that can use a secondary estimate (e.g. motion capture) and take over if some criteria
are invalidated. The guard can use a secondary pipeline configuration without relying on the user-defined modules.
This allows for rapid prototyping with a virtual “safety net”.

1.4.9 Simulator

A sophisticated and configurable simulation that runs magnitudes faster than real time and optionally provides aerody-
namic BEM models as described in Bauersfeld RSS’21.

1.5 Getting Started

If you use ROS, simply clone agilicious into your catkin workspace and catkin build:

cd catkin_ws/src # Create new catkin workspace.
git clone https://github.com/catkin/catkin_simple
git clone git@github.com:uzh-rpg/agilicious.git
catkin build

If you want to use the library standalone, you can always:

cd agilib/build
cmake ..
make

It is highly recommended to run agilicious inside a docker container, instructions are available in Dockerized Build.

1.5.1 Launch your first simulation

For launching simulations you need ROS. Once your compilation using catkin build has been successful, you can
then source your catkin workspace and launch two different types of simulation:

• Agisim simulation, by running the command roslaunch agiros agisim.launch. This simulation environ-
ment has been written by us and supports different levels of complexity. These levels of complexity can be config-
ured in the file agiros/agiros/parameters/simulation.yaml, where, for example, if we would comment
the lines with “ModelRotorSimple” and uncomment the lines with “ModelRotorBEM”, then a BEM simulation
will be launched.

• Gazebo RotorS simulation, by running the command roslaunch agiros simulation.launch

These simulation environments allow the user to test their code by offering a user friendly GUI. The simplest task
would be a “Go to pose”, which can directly be executed by pressing buttons in the GUI. More complex maneuvers can
also be performed, like trajectory tracking. For this, the trajectory can be loaded from a .csv file

1.5. Getting Started 9

https://rpg.ifi.uzh.ch/docs/RSS21_Bauersfeld.pdf


agilicious, Release 0.0.1

1.5.2 How do I change the characteristics of my simulation?

Everything is structured in .yaml files. The most important of these .yaml files is the so-called “Pilot” file. For
example, when launching the Agisim simulation, the agiros/agiros/parameters/simple_sim_pilot.yaml file
is used. Here, the user can define which controller to use, which estimator to use, which quadrotor model to use, etc. If
one were to change the mass of the quadrotor, for example, one would in this case need to modify the agiros/agiros/
parameters/quads/kingfisher.yaml file.

1.6 Dockerized Build

Using our provided Dockerfile you can run the entire repository detached from the dependencies of your local system,
in a docker container.

The steps to run it from scratch are:

1. Install docker: https://docs.docker.com/engine/install/ubuntu/

2. Docker post installation steps: https://docs.docker.com/engine/install/linux-postinstall/
Summarized:

• sudo groupadd docker

• sudo usermod -aG docker $USER

• newgrp docker

• docker run hello-world

3. For computers with NVIDIA graphic cards, there are some additional steps:

10 Chapter 1. Agile flight done right!

https://github.com/uzh-rpg/agilicious/blob/main/Dockerfile
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/linux-postinstall/


agilicious, Release 0.0.1

• Install nvidia-docker2, following this: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/
install-guide.html#setting-up-nvidia-container-toolkit

• Uncomment the NVIDIA_DOCKER_REQUIREMENT='nvidia-docker2' part in the launch_container.
sh file

4. Pull ros image to docker: docker pull ros

5. Clone agilicious repository to your host machine, and cd to the agilicious root folder.
There, you will see a Dockerfile. From there, build the docker image using the Dockerfile:
sudo docker build --tag "ros_agilicious:latest" . Run this command from dockerfile directory

6. Run the docker with GUI capabilities and with access to our host repository,
such that changes in our local repository will have instant effect inside the docker container:
./scripts/launch_container <your_catkin_workspace>

7. Now you have a terminal inside the container with all the dependencies needed to run the code.
Go to /home/agilicious/catkin_ws and run catkin build.

1.7 Code Documentation

For code documentation, we now use Doxygen!

At the moment, the documentation files are not provided and have to be built locally:

1. Install doxygen sudo apt install doxygen

2. Run doxygen in the root folder agilicious/ by simply issuing the doxygen command.

3. Open the documentation in your favourite browser by clicking agilicious/docs/html/index.html!

1.8 Modules Overview

To be completed soon!

1.8.1 The Pilot

The pilot is an agilibmodule implemented by the file agilib/src/pilot/pilot.cpp. It serves two main purposes:

• It is the entry point of the program, and therefore it is in charge of coordinating and orquestrating when and how
to instantiate and run the pipeline module(s).

• It is the main interface point between the agilib library and the agirosROS interface. For example, it takes care
of handling the commands that come from ROS and converting them into actual actions that are then processed
by the running sampler/estimator/controller.

1.7. Code Documentation 11

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#setting-up-nvidia-container-toolkit
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#setting-up-nvidia-container-toolkit
https://www.doxygen.nl/index.html


agilicious, Release 0.0.1

1.8.2 The Guard

The guard is an agilib module implemented in agilib/src/guard/. The purpose of the guard is to keep the drone
safe when things go wrong. It does so by running a completely separate pipeline, with separate sampler, estimator and
controller running in parallel to the main pipeline. If something happens (for example, the controller crashes, the main
estimator diverges, and the drone flies out of a pre-defined 3D volume), the guard triggers automatically and brings the
drone back to safety. The guard is also triggered manually, if the user observes undefined/dangerous behaviour.

1.8.3 The Pipeline Concept

The Pipeline is implemented by agilib/base/pipeline.cpp. Its main purpose is to sequentially execute the dif-
ferent components that form a typical control pipeline. It runs at a fixed rate (100 Hz by default) and executes, most
typically,

• First, it takes care of getting the latest valid state estimate from the estimator

• Then, it takes the active reference trajectory and uses the sampler to create a sequence of setpoints to be tracked
by the controller.

• Then the controller (inner and possibly outer loops) are run. Different types of controllers can be selected,
mainly MPC, Geometric Controller or INDI. The controller outputs a low level command.

• Finally, a bridge translates the control commands to actual actuator inputs.

1.8.4 Estimators

The estimator module group is implemented in agilib/src/estimator. There are different types of estimator,
depending on the information they use:

• ekf: An EKF propagated with a constant acceleration model and updated with 6-DoF pose and IMU measure-
ments.

• ekf_imu: An EKF propagated with IMU measurements and updated with 6-DoF pose measurements.

• feedthrough: The estimation is provided completely from an external estimator.

• mock_vio: A mock estimator that corrupts a ground-truth estimates with noise and bias to simulate real-world
properties.

1.8.5 Samplers

The sampler module is implemented in agilib/src/sampler/. It takes care of taking a trajectory and transforming
it into a sequence of setpoints that can be tracked by a controller. There are two types:

• time_based: It tracks a trajectory in the time domain. It uses the time allocation of the original trajectory to
extract setpoints.

• position_based: From the current state of the drone, it searches the closest point to the trajectory and starts
the sampling from there.

12 Chapter 1. Agile flight done right!



agilicious, Release 0.0.1

1.8.6 Reference Trajectories

The reference module is implemented in agilib/src/references/. It implements different ways of generating
reference trajectories:

• polynomial_trajectories: Using the eigen library, it implements a way of generating polynomials of arbi-
trary high order of magnitude that can be constrained in its different derivatives. A cost function can be minimized
when solving for the polynomials, allowing for generation of minimum snap, minimum jerk, or other types of
polynomials.

• sampled_trajectories: Gets a sequence of previously sampled waypoints and converts it into a trajectory.

1.8.7 Controllers

The controller module is implemented in agilib/src/controller/. There are different kinds of controllers
implemented:

• MPC: Model Predictive Controller. It uses acados with HPIPM solver to build an optimization problem that
minimizes the distance between the designed reference and the online prediction.

• geometric_controller: It implements a differential flatness based geometric controller.

• PID: It implements a classical PID controller.

• INDI: Inverse Nonlinear Dynamic Inversion controller. It’s primarily used for inner loop control (tracking body
rates).

1.8.8 Bridges

The bridge is module implemented in agilib/src/bridge/. The bridge class offers an interface between the com-
mands produced by the controller and the hardware. It uses a thrust map to convert the commands to low level signals
for the designed low level controller. There are different child classes, depending on the hardware. Some of them are:

• sbus: Implements an interface through the SBUS interface.

• ctrl: Implements an interface to the AgiNuttx low level controller.

• laird: Implements an interface that uses LAIRD RF modules. It’s usually used together with the SBUS bridge in
order to get commands from an offboard controller and send them through the SBUS to the low level controller.

1.9 Simulation

The simulator module is implemented in agilib/src/simulator/. The simulation consists of two seperate parts,
a low-level controller and a physics simulation.

The purpose of the low-level controller is to simulate the behavior of the controllers typically found onboard a drone:
it takes a collective thrust and a bodyrate command and translates this into individual motor commands for the four
motors. Every low-level controller should inherit from the LowLevelControllerBase class and implement a run
function, which has access to the full drone state and the CTBR command and needs to compute desired motor RPMs
for each propeller.

The second part is the physics simulation. All such models inherit from ModelBase and need to implement a run
function as well. The function has read-only access to the full state of the drone. It needs to compute the derivative of
the state. All models are chained together in a ModelPipelinewhich is then executed by the simulator. All parameters
required by a model are stored in a corresponding [ModelName]params class.

1.9. Simulation 13



agilicious, Release 0.0.1

Available models include:

• ModelBodyDrag implements quadratic body drag

• ModelLinCubDrag implements linear-cubic body drag (better for MPC applications that also use such a
model internally)

• ModelMotor implements a first-order system for the motor dynamics

• ModelPropellerBEM implements a propeller model based on blade-element-momentum theory which
models forces and propeller drag accurately

• ModelRidgidBody implements a ridgid body model (required to convert accelerations into velocities and
velocities into positions)

• ModelThrustTorqueSimple implements a propeller model based on widely used square law between
propeller speed and thrust

1.10 Hardware Overview

The Agilicious Platform is born as a product of years of research and countless iterations at the Robotics and
Perception Group. The Agilicious Platform consits of the following main components:

• Nvidia Jetson TX2: Main compute unit

• ConnectTech Quasar: Breakout Board

• TMotor F7 Flight Controller: Low-Level Controller

• F55A Pro II 3-6S 4-in-1 ESC: Electronic Speed Controller

• Armattan Chameleon 6": Main Plate

14 Chapter 1. Agile flight done right!



agilicious, Release 0.0.1

• TMotor Veloc V2306 V2.0: Motors

• Azure Power SFP 5148: Propeller

• Tattu R-Line 4s 1800mAh 120C: Battery

1.11 ROS Integration

Our software is split in two parts, called agilib and agiros. agilib is the implementation of the entire library with
all its functionalities, while agiros serves as an interface layer between agilib and ROS.

The user can be referred to the file agiros/agiros/ros_pilot.cpp where the interface for subscription and publi-
cation is written. For example, some of the most representative (but not only) commands are:

• enable: arms the drone

• start: commands the drone to take off

• off: stops and disarms the drone

• trajectory: sends a trajectory that is followed by the drone

• pose_estimate: provides the drone with a pose estimate to be fused in the EKF

• feedthrough_command: directly sends a low level command that bypasses all controller logic and directly goes
to the actuators

The function of the ROS interface is to take these commands (or any command that might be implemented by the user)
and send it downstream to agilib.

1.12 Flightmare Integration

Flightmare is composed of two main components: a configurable rendering engine built on Unity and a flexible physics
engine for dynamics simulation. Those two components are totally decoupled and can run independently from each
other. Hence, we can combine Flightmare with Agilicious for Hardware-in-the-loop (HITL) simulation. HITL
simulation allows for flying a physical quadrotor in the real-world while observing virtual photorealistic environments.

1.12.1 Download Flightmare

Clone the code:

git clone git@github.com:uzh-rpg/flightmare.git

Ignore the Flightmare ROS examples:

touch flightmare/flightros/CATKIN_IGNORE

Download Flightmare Unity Standalone:

curl --show-error --progress-bar --location "https://github.com/uzh-rpg/flightmare/
→˓releases/download/0.0.5/RPG_Flightmare.tar.xz" | tar Jxf - -C flightmare/flightrender/␣
→˓--strip 1

1.11. ROS Integration 15



agilicious, Release 0.0.1

1.12.2 Hardware-in-the-loop Simulation

Now, assume you have both Agilicious and Flightmare downloaded. You need to create a new ros package that combines
both. We provides some hints on how to use Unity rendering here. For details, you can check this example.

Set up Unity rendering. Example code:

// Flightmare Quadrotor and Unity Camera
unity_quad_ = std::make_shared<flightlib::Quadrotor>();
flightlib::Vector<3> quad_size(0.5, 0.5, 0.2);
unity_quad_->setSize(quad_size);

unity_camera_ = std::make_shared<flightlib::RGBCamera>();
flightlib::Vector<3> B_r_BC(0.0, 0.0, 0.3);
Scalar pitch_angle_deg = 0.0;
flightlib::Matrix<3, 3> R_BC =
(Eigen::AngleAxisf(0.0 * M_PI, Eigen::Vector3f::UnitX()) *
Eigen::AngleAxisf(-pitch_angle_deg / 180.0 * M_PI,

Eigen::Vector3f::UnitY()) *
Eigen::AngleAxisf(-0.5 * M_PI, Eigen::Vector3f::UnitZ()))
.toRotationMatrix();

double hor_fov_radians = (M_PI * (110 / 180.0));
double width = 640.0;
double height = 480.0;
// Recalculate here: https://themetalmuncher.github.io/fov-calc/;
double vertical_fov =
2. * std::atan(std::tan(hor_fov_radians / 2) * height / width);

vertical_fov = (vertical_fov / M_PI) * 180.0; // convert back to degrees
std::cout << "Vertical FoV is " << vertical_fov << std::endl;
unity_camera_->setFOV(vertical_fov);
unity_camera_->setWidth(width);
unity_camera_->setHeight(height);
unity_camera_->setRelPose(B_r_BC, R_BC);
unity_quad_->addRGBCamera(unity_camera_);

// Connect Unity
setUnity(unity_render_);
connectUnity();

Set Unity:

bool setUnity(const bool render) {
unity_render_ = render;
if (unity_render_ && unity_bridge_ == nullptr) {
unity_bridge_ = flightlib::UnityBridge::getInstance();
unity_bridge_->addQuadrotor(unity_quad_);
//
if (!loadRacetrack(pnh_)) {
ROS_WARN("[%s] No race track is specified.", pnh_.getNamespace().c_str());

} else {
};

ROS_INFO("[%s] Unity Bridge is created.", pnh_.getNamespace().c_str());
return true;

(continues on next page)

16 Chapter 1. Agile flight done right!

https://github.com/uzh-rpg/flightmare/blob/master/flightros/src/camera/camera.cpp


agilicious, Release 0.0.1

(continued from previous page)

} else {
return false;

}
}

Connect Unity:

bool connectUnity() {
if (!unity_render_ || unity_bridge_ == nullptr) return false;
unity_ready_ = unity_bridge_->connectUnity(unity_scene_id_);
return unity_ready_;

}

The images are rendered based the current quadrotor states. Below are example codes for publishing images. Publish
images:

void publishImages(const QuadState &state) {
sensor_msgs::ImagePtr rgb_msg;
frame_id_ += 1;
// render the frame
flightlib::QuadState unity_quad_state;
unity_quad_state.setZero();
unity_quad_state.p = state.p.cast<flightlib::Scalar>();
unity_quad_state.qx = state.qx.cast<flightlib::Scalar>();
unity_quad_->setState(unity_quad_state);
// Warning, delay
unity_bridge_->getRender(frame_id_);
unity_bridge_->handleOutput(frame_id_);
cv::Mat img;
unity_camera_->getRGBImage(img);
rgb_msg = cv_bridge::CvImage(std_msgs::Header(), "bgr8", img).toImageMsg();
rgb_msg->header.stamp = ros::Time(state.t);
image_pub_.publish(rgb_msg);

}

1.12. Flightmare Integration 17


	Agile flight done right!
	License
	Papers to cite if you use Agilicious
	Dependencies
	What’s in it for you?
	Pipelines
	Controllers
	Estimators
	References
	Samplers
	Bridges
	Pilot
	Guard
	Simulator

	Getting Started
	Launch your first simulation
	How do I change the characteristics of my simulation?

	Dockerized Build
	Code Documentation
	Modules Overview
	The Pilot
	The Guard
	The Pipeline Concept
	Estimators
	Samplers
	Reference Trajectories
	Controllers
	Bridges

	Simulation
	Hardware Overview
	ROS Integration
	Flightmare Integration
	Download Flightmare
	Hardware-in-the-loop Simulation



